Monday, 1 May 2017

Tree Traversal in C

#include <stdio.h>
#include <stdlib.h>

struct node {
   int data; 
 
   struct node *leftChild;
   struct node *rightChild;
};

struct node *root = NULL;

void insert(int data) {
   struct node *tempNode = (struct node*) malloc(sizeof(struct node));
   struct node *current;
   struct node *parent;

   tempNode->data = data;
   tempNode->leftChild = NULL;
   tempNode->rightChild = NULL;

   //if tree is empty
   if(root == NULL) {
      root = tempNode;
   } else {
      current = root;
      parent = NULL;

      while(1) { 
         parent = current;
         
         //go to left of the tree
         if(data < parent->data) {
            current = current->leftChild;                
            
            //insert to the left
            if(current == NULL) {
               parent->leftChild = tempNode;
               return;
            }
         }//go to right of the tree
         else {
            current = current->rightChild;

            //insert to the right
            if(current == NULL) {
               parent->rightChild = tempNode;
               return;
            }
         }
      }            
   }
}

struct node* search(int data) {
   struct node *current = root;
   printf("Visiting elements: ");

   while(current->data != data) {
      if(current != NULL)
         printf("%d ",current->data); 

      //go to left tree
      if(current->data > data) {
         current = current->leftChild;
      }
      //else go to right tree
      else {                
         current = current->rightChild;
      }

      //not found
      if(current == NULL) {
         return NULL;
      }
   }
   
   return current;
}

void pre_order_traversal(struct node* root) {
   if(root != NULL) {
      printf("%d ",root->data);
      pre_order_traversal(root->leftChild);
      pre_order_traversal(root->rightChild);
   }
}

void inorder_traversal(struct node* root) {
   if(root != NULL) {
      inorder_traversal(root->leftChild);
      printf("%d ",root->data);          
      inorder_traversal(root->rightChild);
   }
}

void post_order_traversal(struct node* root) {
   if(root != NULL) {
      post_order_traversal(root->leftChild);
      post_order_traversal(root->rightChild);
      printf("%d ", root->data);
   }
}

int main() {
   int i;
   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };

   for(i = 0; i < 7; i++)
      insert(array[i]);

   i = 31;
   struct node * temp = search(i);

   if(temp != NULL) {
      printf("[%d] Element found.", temp->data);
      printf("\n");
   }else {
      printf("[ x ] Element not found (%d).\n", i);
   }

   i = 15;
   temp = search(i);

   if(temp != NULL) {
      printf("[%d] Element found.", temp->data);
      printf("\n");
   }else {
      printf("[ x ] Element not found (%d).\n", i);
   }            

   printf("\nPreorder traversal: ");
   pre_order_traversal(root);

   printf("\nInorder traversal: ");
   inorder_traversal(root);

   printf("\nPost order traversal: ");
   post_order_traversal(root);       

   return 0;
}
 
/* 
Traversal is a process to visit all the nodes of a tree and may print 
their values too. Because, all nodes are connected via edges (links) we 
always start from the root (head) node. That is, we cannot random access
 a node in a tree. There are three ways which we use to traverse a tree −
  • In-order Traversal
  • Pre-order Traversal
  • Post-order Traversal
We shall now look at the implementation of tree traversal in C programming language here using the following binary tree −
Binary Search Tree
 
 
OUTPUT:
Visiting elements: 27 35 [31] Element found.
Visiting elements: 27 14 19 [ x ] Element not found (15).

Preorder traversal: 27 14 10 19 35 31 42 
Inorder traversal: 10 14 19 27 31 35 42 
Post order traversal: 10 19 14 31 42 35 27 
*/

Breadth First Traversal in C

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

#define MAX 5

struct Vertex {
   char label;
   bool visited;
};

//queue variables

int queue[MAX];
int rear = -1;
int front = 0;
int queueItemCount = 0;

//graph variables

//array of vertices
struct Vertex* lstVertices[MAX];

//adjacency matrix
int adjMatrix[MAX][MAX];

//vertex count
int vertexCount = 0;


//queue functions

void insert(int data) {
   queue[++rear] = data;
   queueItemCount++;
}

int removeData() {
   queueItemCount--;
   return queue[front++]; 
}

bool isQueueEmpty() {
   return queueItemCount == 0;
}

//graph functions

//add vertex to the vertex list
void addVertex(char label) {
   struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex));
   vertex->label = label;  
   vertex->visited = false;     
   lstVertices[vertexCount++] = vertex;
}

//add edge to edge array
void addEdge(int start,int end) {
   adjMatrix[start][end] = 1;
   adjMatrix[end][start] = 1;
}

//display the vertex
void displayVertex(int vertexIndex) {
   printf("%c ",lstVertices[vertexIndex]->label);
}       

//get the adjacent unvisited vertex
int getAdjUnvisitedVertex(int vertexIndex) {
   int i;
 
   for(i = 0; i<vertexCount; i++) {
      if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false)
         return i;
   }
 
   return -1;
}

void breadthFirstSearch() {
   int i;

   //mark first node as visited
   lstVertices[0]->visited = true;

   //display the vertex
   displayVertex(0);   

   //insert vertex index in queue
   insert(0);
   int unvisitedVertex;

   while(!isQueueEmpty()) {
      //get the unvisited vertex of vertex which is at front of the queue
      int tempVertex = removeData();   

      //no adjacent vertex found
      while((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) {    
         lstVertices[unvisitedVertex]->visited = true;
         displayVertex(unvisitedVertex);
         insert(unvisitedVertex);               
      }
  
   }   

   //queue is empty, search is complete, reset the visited flag        
   for(i = 0;i<vertexCount;i++) {
      lstVertices[i]->visited = false;
   }    
}

int main() {
   int i, j;

   for(i = 0; i<MAX; i++) // set adjacency {
      for(j = 0; j<MAX; j++) // matrix to 0
         adjMatrix[i][j] = 0;
   }

   addVertex('S');   // 0
   addVertex('A');   // 1
   addVertex('B');   // 2
   addVertex('C');   // 3
   addVertex('D');   // 4
 
   addEdge(0, 1);    // S - A
   addEdge(0, 2);    // S - B
   addEdge(0, 3);    // S - C
   addEdge(1, 4);    // A - D
   addEdge(2, 4);    // B - D
   addEdge(3, 4);    // C - D
 
   
   printf("\nBreadth First Search: ");
   
   breadthFirstSearch();

   return 0;
}
 
 
/* 
We shall not see the implementation of Breadth First Traversal (or Breadth First Search) in C programming language. For our reference purpose, we shall follow our example and take this as our graph model −







Breadth First Search
Breadth First Search: S A B C D

 */

Depth First Traversal in C

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

#define MAX 5

struct Vertex {
   char label;
   bool visited;
};

//stack variables

int stack[MAX]; 
int top = -1; 

//graph variables

//array of vertices
struct Vertex* lstVertices[MAX];

//adjacency matrix
int adjMatrix[MAX][MAX];

//vertex count
int vertexCount = 0;

//stack functions

void push(int item) { 
   stack[++top] = item; 
} 

int pop() { 
   return stack[top--]; 
} 

int peek() {
   return stack[top];
}

bool isStackEmpty() {
   return top == -1;
}

//graph functions

//add vertex to the vertex list
void addVertex(char label) {
   struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex));
   vertex->label = label;  
   vertex->visited = false;     
   lstVertices[vertexCount++] = vertex;
}

//add edge to edge array
void addEdge(int start,int end) {
   adjMatrix[start][end] = 1;
   adjMatrix[end][start] = 1;
}

//display the vertex
void displayVertex(int vertexIndex) {
   printf("%c ",lstVertices[vertexIndex]->label);
}       

//get the adjacent unvisited vertex
int getAdjUnvisitedVertex(int vertexIndex) {
   int i;

   for(i = 0; i<vertexCount; i++) {
      if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false) {
         return i;
      }
   }
         
   return -1;
}

void depthFirstSearch() {
   int i;

   //mark first node as visited
   lstVertices[0]->visited = true;

   //display the vertex
   displayVertex(0);   

   //push vertex index in stack
   push(0);

   while(!isStackEmpty()) {
      //get the unvisited vertex of vertex which is at top of the stack
      int unvisitedVertex = getAdjUnvisitedVertex(peek());

      //no adjacent vertex found
      if(unvisitedVertex == -1) {
         pop();
      } else {
         lstVertices[unvisitedVertex]->visited = true;
         displayVertex(unvisitedVertex);
         push(unvisitedVertex);
      }
   }

   //stack is empty, search is complete, reset the visited flag        
   for(i = 0;i < vertexCount;i++) {
      lstVertices[i]->visited = false;
   }        
}

int main() {
   int i, j;

   for(i = 0; i<MAX; i++) // set adjacency {
      for(j = 0; j<MAX; j++) // matrix to 0
         adjMatrix[i][j] = 0;
   }
   
   addVertex('S');   // 0
   addVertex('A');   // 1
   addVertex('B');   // 2
   addVertex('C');   // 3
   addVertex('D');   // 4
 
   addEdge(0, 1);    // S - A
   addEdge(0, 2);    // S - B
   addEdge(0, 3);    // S - C
   addEdge(1, 4);    // A - D
   addEdge(2, 4);    // B - D
   addEdge(3, 4);    // C - D
 
   printf("Depth First Search: ");

   depthFirstSearch(); 

   return 0;   
}
 
 
/* 
We shall not see the implementation of Depth First Traversal (or Depth First Search) in C programming language. For our reference purpose, we shall follow our example and take this as our graph model −
Depth First Search
 
 Depth First Search: S A D B C
 
 */